[CONTRIBUTION FROM THE CHEMICAL DIVISION OF SCHERING CORPORATION]

The Analgesic Activity of N,N-Dialkyl Amides¹

By Domenick Papa, Erwin Schwenk, Frank Villani and Erwin Klingsberg²

In the course of screening compounds for pharmacological action, it was observed that α -phenyl-N,N-diethyl cinnamamide potentiated nembutal hypnosis in rats. A similar synergistic effect has been observed previously by Loewe³ and Seifert⁴ who have reported that the combination of phenobarbital with morphine results in an increase in the intensity of the analgesic effect of morphine. More recently, the comparative potentiating effects of acetylsalicylic acid, amidopyrine, demerol and morphine on the hypnotic effect of evipal sodium have been demonstrated.⁵ Although potentiation of hypnotic effect has been shown to be non-specific for analgesic drugs, it, nevertheless, appeared of interest to investigate a series of amides, particularly cinnamamides, for non-opiate analgesic activity.

The amides (Table I) synthesized in the course of this investigation are of the general formula I, wherein R is aryl or heterocyclic and the alkyl, halogen, hydroxyl, acetoxy, nitro and acetyl-

RCH=CR'-CON(R")2 I

amino derivatives, R' is hydrogen, alkyl, aryl and alicylic and R'' is hydrogen or a lower alkyl group. In addition, a number of other amides, dialkyl amides and heterocyclic nitrogen derivatives of aryl and heterocyclic carboxylic acids have been prepared for pharmacological study.

In general, the amides of formula I have been prepared by the reaction of the appropriate acid chlorides with ammonia, monoalkylamines or the dialkylamines by conventional methods. The ring-substituted cinnamic acids6 were secured by the Perkin condensation of the appropriately substituted benzaldehydes and potassium acetate or by the Doebner condensation of the benzaldehydes and malonic acid. The α -alkyl,⁶ aryl⁶ or alicylic⁷ cinnamic acids were prepared by known methods.

The preliminary pharmacological assay of the amides did not indicate any analgesic activity comparable to that of either morphine, demerol or other synthetics of the latter type. In view of the uncertainties common to the standard tests for analgesic activity, particularly when

(3) Loewe, Deutsche Med. Wochnschr., 38, 947 (1912).

(4) Seifert, "Die Nebenwirkungen der modern Azrneimittel," Wurzburg, 1915.

(5) Barlow, Climenko and Homburger, Proc. Soc. Exp. Biol. and

Med., 49, 11 (1942). (6) "Organic Reactions, The Perkin Reaction," Vol. I, John Wiley and Sons, Inc., New York, N. Y., 1942.

applied to compounds of the type of acetyl salicylic acid and phenacetin, a new test for analgesic activity was developed by our Pharmacology Laboratory.⁸ This test is based upon the analgesic effect of the test drug, given orally in a starch suspension, against inflamed joint pain artificially produced in animals. For purposes of comparison, the ED/50 for acetylsalicylic acid, phenacetin and amidopyrine was determined and the amides (Table I) compared with these standards. Preliminary toxicity and analgesic assay indicated an order of activity for the unsubstituted N,N-dialkyl cinnamamides comparable to that of the standard drugs. In particular, N,N-diethyland N,N-dibutylcinnamamide cinnamamide showed an analgesic effect approximately three times that of phenacetin and an extremely favorable therapeutic ratio in experimental animals.

The antipyretic action of the amide was determined by the effectiveness of the compounds under test in reducing fever produced in rats. In this study, the compounds were administered orally in starch suspension in water. N,N-Diethylcinnamamide has an antipyretic action twice that of the standard drugs at approximately the same dose level.

In a limited clinical study, N,N-diethylcinnamamide was found to be less effective than acetyl salicylic acid and was not well tolerated. Among the side reactions observed with this drug were gastric irritation, nausea and occasional vomiting.

Experimental

Preparation of Acid Chlorides.-Purified thionyl chloride (125 cc.) was added with efficient cooling to 0.2 mole of the cinnamic acid. After the initial reaction had subsided, the mixture was refluxed on the steam-bath for three hours. The excess thionyl chloride was removed under vacuum and the residue distilled under reduced pressure. All of the cinnamoyl chlorides, with the exception of the pnitro-, the diaryl and aryl-alicyclic compounds, were distilled prior to use.

Preparation of Amides.—A mixture of 0.2 mole of the cinnamoyl chloride, 0.4 mole of the amine and 200 ml. of anhydrous benzene was refluxed on the steam-bath for two hours. The product was poured into ice-water, the organic layer was separated and washed successively with dilute (10%) hydrochloric acid, dilute (10%) sodium bicarbonate and finally with water. After removal of the benzene, the residue was either distilled in vacuo and/or recrystallized.

For the preparation of p-acetylaminocinnamoyl diethyl amide, the p-amino-compound, formed by the reduction of p-nitrocinnamoyl diethyl amide with ferrous sulfate and ammonia, was acetylated in the conventional manner using acetyl chloride. Other amides which were prepared and are not included in Table I are as follows:

Diethylamide of α , β -diphenylpropionic acid, yield 68%, b. p. 164–166° (1 mm.). *Anal.* Calcd. for C₁₉H₂₃ON: N, 4.98. Found: N, 5.00

(8) A preliminary report on this test has been given by LaBelle and Tislow at the November, 1949, meeting of the Society of Pharmacology and Experimental Therapeutics at Indianapolis, Indiana.

⁽¹⁾ Presented in abstract before the Division of Medicinal Chemistry, American Chemical Society Meeting, Atlantic City, 1949.

⁽²⁾ American Cyanamid Co., Calco Chemical Division, Bound Brook, New Jersey.

⁽⁷⁾ Schwenk and Papa, THIS JOURNAL, 67, 1432 (1945).

AMIDES OF FORMULA RCH=-CR'CONR''R'''														
R	R'	R''	R"'	Vield %ª	, B.p. °C.	'Mm.	М. р., °С.	Formula	Car Calcd.	bon Found	Analyse Hydi Calcd.	s, % rogen Found	Nitr Calcd.	ogen Found
CH3	H	C_2H_5	C ₂ H ₅	86	105-106	16		C ₈ H ₁₅ ON	68.09	68.23	10.71	10.41		
C6H6	н	H	C≰H₅	86			96-96.5 ⁶							
C ₆ H ₄	H	CH3	CH3	88			101-102 ^f							
C ₈ H ₆	н	C₂H₅	CH	64	160-161	2		C12H15ON					7.40	7.47
C ₆ H ₅	н	CH:	C ₃ H7	71	160-162	4		C13H17ON					6.89	6.57
C ₆ H ₅	н	C ₂ H ₅	C ₂ H ₅	94			69-70 ⁹							
C ₆ H ₅	н	C_2H_5	n-C₄H₃	72	170-172	3		C15H21ON	77.49	76.92	9.12	9.02		
C ₆ H ₅	н	i-C3H7	<i>i</i> -C ₃ H ₇	92	152 - 154	1		C15H21ON					6.05	5.85
C6H5	н	C ₃ H ₇	C ₃ H ₇	86	165-167	1.5	$53 - 54^{d}$	C15H21ON					6.05	6.10
C ₆ H ₅	H	n-C4H9	n-C4H9	76	191-193	4		C17H25ON					5.42	5.66
C ₆ H ₅	н	n-C6H11	n-C6H11	79	205 - 207	4								
4-CH ₃ C ₆ H ₄	н	C ₂ H ₅	C₂H₅	84	152 - 154	2		C14H19ON	77.38	77.47	8.81	8.88		
<i>i</i> -C ₃ H ₇ C ₆ H ₄	н	C ₂ H ₅	C_2H_5	82	178-180	1		C ₁₆ H ₂₈ ON					5.97	6.08
4-BrC ₆ H ₄	н	C₂H₅	C_2H_5	62			71-72°	C13H16ONBr					4.94	4.96
$3-NO_2C_6H_4$	н	C ₂ H ₅	C_2H_5	80			85-86 ^c	C11H16O3N2	62,91	63,17	6.52	6.67		
4-CH3OC8H4	н	C₂H₅	C ₂ H ₅	75	184-186	1		C14H19O3N	72.07	71.96	8.28	8.26		
2-OHC6H4	н	C₂H₅	C_2H_5	68			169-170 ^e	$C_{13}H_{17}O_2N$	71,24	71.13	7.82	8.19	6.39	6.50
3-OHC6H6	н	C_2H_5	C₂H₅	70			120-121°	C16H17O2N	71.24	71.54	7.82	7.70		
3-CH3COOC6H4	н	C ₂ H ₅	C_2H_5	60	198-200	3	64-64.5	C15H19O3N	69.11	69.18	7.34	7.43		
4-CH ₃ CONHC ₆ H ₄	н	C_2H_5	C ₂ H ₅	51			157-158°	$C_{15}H_{20}N_2O_2$	69.23	69.32	7,69	7.96		
3,4-OCH2OC6H3	н	C_2H_5	C_2H_5	48			70-71°	C14H17O3N					5.66	5.90
C _f H ₅	CH₃	C_2H_6	C ₂ H ₅	74	135-136	1		C14H19ON					6.45	6.22
C6H5	C_2H_b	C₂H₅	C_2H_5	64	134-135	1		C16H21ON					6.05	6,06
C ₆ H ₅	n-C₄H9	C ₂ H ₅	C_2H_5	78	151-153	0.5		C17H25ON					5.45	5.19
α-C10H7	н	C ₂ H ₅	C₂H₅	55			95-96°	C17H19ON					5.53	5.81
C ₆ H ₅	C ₆ H ₅	н	н	82			130-131 ⁴							
C₄H₅	C ₆ H ₅	C_2H_5	C_2H_5	73			92-93 ^c	$C_{19}H_{21}ON$					5.01	4.99
C ₆ H ₉	C ₆ H ₅	н	н	80			135-136 ^c	C ₁₆ H ₁₇ ON					6.16	6.09
C ₆ H ₂	C ₆ H ₅	C_2H_5	C ₂ H ₅	65	175-177	1		C19H25ON					4.94	4.82
C₅H₄N	C ₆ H ₅	C₂H₅	C_2H_5	66			80-81 ^c	$C_{18}H_{20}ON_2$					9.99	9.66
C4H3O	н	C_2H_5	C ₂ H ₅	62	152 - 154	5		$C_{11}H_{15}O_2N$					7.25	7.26

TABLE I

^a The yields reported are based on single experimental runs and do not represent the maximum obtainable. ^b Previously reported melting point 92–93°, Hermann and Vorlander, *Chem. Zentr.*, **70**, I, 730 (1899). ^c Recrystallization solvent, benzene-petroleum ether. ^d Recrystallization solvent, petroleum ether. ^e Recrystallization solvent, aqueous ethanol. ^f Previously reported melting points 96° (ref. b) and 103°, Staudinger and Kon, *Ann.*, **384**, 119 (1911). ^e Previously reported melting point 66° (ref. b). ^h Previously reported melting point 127°, Stoermer, *Ann.*, **409**, 37 (1915).

Diethylamide of undecylenic acid, yield 78%, b. p. 150–153° (1 mm.), n^{26} D 1.4599. *Anal.* Calcd. for C₁₅-H₂₉ON: N, 5.94. Found: N, 6.04.

3886

N-Cinnamoylmorpholine, yield 54%, m. p. $93-94^{\circ}$ after recrystallization from ligroin (b. p. $60-75^{\circ}$). Anal. Calcd. for C₁₄H₁₅O₂N: N, 6.46. Found: N, 6.64.

N,N'-Dicinnamoylpiperazine, yield 78%, m. p. 270-

N,N⁻-Dicinnamoypiperazine, yield 76%, in. p. 270⁻ 271° after recrystallization from chloroform-ether. Anal. Calcd. for C₂₂H₂₂O₂N₂: N, 8.11. Found: N, 7.98. Diethylamide of p,p'-diphenyldiacetic acid, yield 76%, m. p. 115–115.5° after recrystallization from aqueous acetone. Anal. Calcd. for C₂₄H₃₂O₂N₂: C, 75.76; H, 8.47. Found: C, 75.50; H, 8.51.

Diethylamide of 1,4-phenylenediacetic acid, yield 65%, m. p. $84-85^{\circ}$ after recrystallization from benzene-petro-leum ether. Anal. Calcd. for C₁₈H₂₈O₂N₂: C, 71.02; H, 9.27. Found: C, 71.03; H, 9.57.

Diethylamide of diphenylacetic acid, yield 55%, m. p. after recrystallization from benzene-petroleum Anal. Calcd. for $C_{18}H_{21}ON$: C, 80.86; H, 7.91. 70-71° ether. Anal. Calcd. for $C_{18}H_{21}ON$: C, 80.86; H, 7.91. Found: C, 80.78; H, 7.96. 2,2-Dibutylhexyl amide of α -phenylcinnamic acid was

obtained by refluxing for fifteen hours a mixture of 12.5 g. of α -phenylcinnamoyl chloride, 10 g. of 2,2-dibutylhexyl amine,⁹ 30 cc. of pyridine and 50 cc. of benzene. The crude amide was isolated and recrystallized from petroleum

(9) Allardt and Junkmann, U. S. Patent 2,361,524, October 31, 1944.

ether, m. p. 75-76°. Anal. Calcd. for $C_{29}H_{41}ON$: C, 83.00; H, 9.85. Found: C, 83.34; H, 10.05.

Diethylamide of styrylacrylic acid, yield 58%, m. p. 75-76° after recrystallization from dilute ethanol. Anal. Calcd. for C15H19ON: C, 78.71; H, 8.35. Found: C, 78.80; H, 8.21.

Diethylamide of coumarilic acid; yield 64%, b. p. 157-159° (4 mm.). Anal. Calcd. for C₁₃H₁₅O₂N: N, 6.45. Found: N, 6.06.

Diethylamide of 3-phenylcoumarilic acid was obtained from 3-phenylcoumariloyl chloride¹⁰ and diethylamine; yield 77%, m. p. 84–85°. Anal. Calcd. for $C_{19}H_{19}O_2N$: N, 4.78. Found: N, 4.71.

Acknowledgment.--The authors wish to express their sincere appreciation to Dr. Richard Tislow and Mrs. Annette La Belle for permission to publish preliminary pharmacological data on the compounds, and to Miss Margaret Sherlock and Mr. Joseph Lang for technical assistance.

Summary

A series of substituted N,N-dialkyl cinnamamides have been prepared and tested for analgesic activity.

BLOOMFIELD, N. J. **Received** February 24, 1950

(10) Fuson, Kaiser and Speck, J. Org. Chem., 6, 850 (1941).